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\\ ABSTRACT
The theoretical study of image contrast from small finite

dislocation loops in an isotropic bcc crystal, reported in Parts I and II
(Eyre et al 1977 a,b), has been extended to include non-edge loops.

Computer image simulation has again been used to study the influence of Tloop
normal,(n) Burger's vector,(b, diffraction vector,(g) and image plane normal,
(é) on the distribution of black-white intensities in images from loops
located in Layer 1, i.e. within 0.25 Z;> of the surface, wherej%b)is the

extinction distance for the diffracting vector (gl As before, the choice and

range of parameters have been determined by the authors interest in
radiation damage in bcc molybdenum. The main conclusion from a survey of
non-edge perfect loop images is that modifications are predicted to the
images from edge loops on going to the non-edge configuration, but that in
the majority of cases the scheme of image classification introduced for edge
loops based on {g.b| is still appropriate.‘ Generally, the modifications to
the edge images take the form of some skewing of the black-white lobes or
rotation of the black-white interface. In particular, it was found that,
firstly, the images where |g.b[>1 always retain their characteristic

interface structure between the black and white lobes. Secondly, the

g.b. = 0 images from loops with b normal to z may be distorted significantly
from the symmetrical "butterfly" obtained from pure edge loops and, thirdly,
for some specific combinations of g,b,n and z difficulty is encountered in

distinguishing between modified g.b. = 0 and 0<|g.b.|<] images. Lastly, the

application of these results to the experimental determination of band n

is discussed. .
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Figure 1

Figure 2

Figure 3

Figure 4

ILLUSTRATIONS

Stereographic projections illustrating the crystallographic
relationships between the possible Burgers vectors (b), Toop
normal (21' n and 23) adn the diffracting vectors (g) under
consideration in a B.C.C. crystal with (a) z = (011] and
(b) z = (001]. The symbol @ specifies dislocation loops whose
images are shown in figures 2-7,
Dark field images at z = [011) corresponding to various stages
in the formation of a perfect loop 92 = % [TIT] from faulted
loops by = % (017 and E] = % {T10). The images (i)-(vii)
represent different combinations of b and n for each diffrac-
tion vector, g. The loop normal or its projection in the
image plane is marked on each image and the three directions
of n are:

1. n,, parallel to the nucleation Burgers vector b,,

((1) and (iii) or (i1) and (iv)).
L« 0ys mid-way between " and n3 ({v) or (vi))
. N3 parallel to the perfect loop Burgers vector
92, (vii).

The scale marker corresponds to 10 nm and the computation
parameters are given in §2.4. A similar system of notation
is used in Figures 3-7.
Dark field images at z = (011) of various stages in the forma-
tion of a perfect loop b, = % (M1 1from faulted loops b, =
% (0117 and b = 5 (T10).
Dark field images at z = [011) of various stages in the forma-
tion of a perfect loop 92 = a[l00j from faulted loops g] =
% 1017 and by = 5 [110).
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Figure 5A

Figure 5B

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Dark field images at z = [011] of various stages in the forma-
tion of a perfect loop 92 = ar010) from faulted loops g, =

% C01T) and b, = 3 0111,

Dark field images at z = [011] of various stages in the forma-
tion of a perfect loop 92 = a[010] from faulted loops 94 = &
% [T10Jand b, = 5 (1101,

Dark field images at z = [001] of various stages in the forma-
tion of a perfect loop 92 = [010] from faulted loops g] =

% (0117 and b, = 3 (110].

Dark field images at z = [001] of various stages in the forma-

tion of a perfect loop b, = [001] from faulted loops b, =

% (0111 and b, C1011.

Dark field images at z = [011] showing the relation between
g, t, borb, andnorn,. In (a) b = % (T3 n =[T11] and
g =700; (b)b=3%(M, n=[N0O)andg=200; (c)b=

§ M1, n=(TM0Jand g = 21T; (d) b = 7 (T3, n = (TI0]
and g = ZT1; (e) b = %-[T\T]. n = [01T) and g = 01T, and in
(f) b = ;-[TﬁTj. n = [01T] and g = Z1T. Scale marker corre-
sponds to 10 nm,

Dark field images showing the effect of increasing the product

of |g| and |b| on type 2 (|g.b| = 0) images from pure edge

loops. Scale marker corresponds to 10 nm.

Dark field images from loops having 92 = ar010] in an edge

(ga) and two non-edge (92 and 31) configurations at z =(011)
with g = 200 and g = 2T1. The scale marker corresponds to 10 nm.
Dark field images from edge (53) and non edge (92 and ﬂ])

loops having b2= % (TIT) and 92- % ( 11Tiat z = [011] with

g = 21T and g = 200 respectively. The scale marker corresponds

to 10 nm.
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Figure 12

Figure 13

Figure 14

Figure 15

Dark field images from edge Q\3) and non-edge (g‘ and “-2)
loops having b,= af010] and b= 5 [TIT] at z = [011] with
9 = 21T. The scale marker corresponds to 10 nm.

Dark field images from edge and non edge ; <111> loops at

2z = [011] illustrating the relationship between the vectors
n and m for the different combinations of loop geometries
and diffraction vectors. In (a) 92 - % (NT) with: first
row, ny = [11T], second row, n, = (01T}, and in the third
row, ny = (1101 In (b) by = 5 [111] with: first row ny =

(111], second row, n, = [011] and in the third row, n, =

1 =1

(110]. The scale marker corresponds to 10 nm.

Dark field images from edge and non edge a<100> loops at

2 = [011)] 1llustrating the relationships between the vectors
n and m for the different combinations of loop geometries
and diffraction vectors. In (a) 92 = a(010) and four loop
normals are considered: first column, ny = (0101, second
column, n, = [01T), third colum, n, = (011], and in the
fourth column, n, = [110]. In (b) b, = a(1001T00p and two
different loop normals are considered: first column, ny =
a(100], and in the second column, n, = (110]. The scale
marker corresponds to 10 nm.

Dark field images from edge and non edge loops with b,= a(100]
at z = [001] illustrating the relationships between the
vectors n and m for the different combinations of loop
geometries and diffraction vectors. Three loop normals are
considered: top row, ny = (1001, middle row, n - (1001, and
in the bottom row n, = (101]. The scale marker corresponds

to 10 nm.
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1. Introduction

Small dislocation loops lying close to the top or bottom surface of a
thin foil exhibit characteristic black-white (B-W) contrast when imaged under
strong two-beam diffraction conditions in the electron microscope. Much of
the early work on B-W images was based upon theoretically calculated intensity
profiles for pure edge loops, and it was suggested that the vector & joining
the centre of the black lobe to that of the white was independent of the
imaging reflection g and parallel (within a few degrees) to the projection

b _of the Burgers vector b (e.g. Ruhle et al 1965, Ruhle 1967a,b and

M:Intyre. 1967). However, a fundamental limitation of intensity profiles is
that they do not expose the two-dimensional symmetry which can be such an
important feature of B-W images. More recently, two approaches have been
developed for displaying two-dimensional computed images from both edge and
non-edge loops. The first involves calculating equi-intensity contour maps
which may then be compared directly with experimental micrographs (Wilkens

and Ruhle 1972, Halssermann et al 1972), or with a two-dimensional densito-
meter trace obtained from these (FO11 and Wilkens, 1977). The second approach
is to obtain a photographic negative from a grid of computed intensities which
are displayed on a C.R.T. unit (Maher et al 1971, Saldin and Whelan 1975).
Care must be taken to calibrate the optical density on the computed negative
with the response to electrons of the photographic emulsion used in the
microscope. In this way it has been shown that the 2-analysis method of
determining b can break down for non-edge loops, and even for edge loops if
the angle between g and gp is large (Eyre 1972, Wilkens and Ruhle 1972,

Eyre et al 1974). The quantitative relation between &, g, b and the loop
normal n has recently been examined by Ohr (1976).

An important conclusion of the theoretical studies is that by observing

experimental B-W images using a number of operating reflections and comparing
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these with the corresponding computed images, it should be possible to

; determine b unambiguously, and to obtain an estimate of n (Haussermann et al

1972, Holmes et al 1976, Ohr 1976, English et al 1978). In recent studies by

Wilkens and co-workers at Stuttgart (Haﬁssermann et al 1972, J§ger and Wilkens
1975), and at Harwell (English et al 1977, 1978, Jenkins et al 1978) consider- 5
able emphasis has been placed on analysing small dislocation loops formed in ?1

irradiated bcc metals since they are more complex in terms of the possible

e
e

combinations of b and n compared with fcc metals. In two previous papers
(Eyre et al 1977a,b, subsequently referred to as Parts I and II), computer
simulated B-W images of pure edge loops in isotropic bcc and fcc materials

were presented and compared with experimental micrographs of irradiated

molybdenum and copper crystals. It was shown that relating image symmetry
from edge loops located within the layer structure to [g.b| and the angle
between b (n) and z where z is the foil normal, enables a comparatively
simple classification to be made of the many different possible images. In
this paper (Part III) we present computer simulated B-W images representing
all expected non-edge loops in a bcc material. As in Part I, the displacement
field of a finite circular loop in an isotropic elastic medium is used,
together with the two-beam dynamical electron diffraction equations. The
application of these results to the analysis of a mixed population of small
Toops having different combinations of b and n is presented in a fourth paper
(English et al 1979) subsequently referred to as Part IV.

2. The Calculation of the Electron Intensities

2.1 The Solution of the Electron Diffraction Equations

The theoretical images presented in Part I were computed using the
programme described by Bullough, Maher and Perrin (1971). This employed
the two-beam dynamical electron diffraction equations with the column

approximation as given by Howie and Whelan (1961), in the form which




requires the derivative of the defect displacement field R in the
dR
direction of the electron beam-ag,ln the present work two other forms

of the diffraction equations were also tried in an attempt to reduce
the computational time: the alternative set of Howie-Whelan equations
which require R rather than ;g. and the Bloch wave equaticns which
employ ;%. In all three versions of the program the equations were
numerically integrated down the two-dimensional grid of columns with a

variable step-length Kutta-Merson routine.

dR
Of the two Howie-Whelan versions, that employing 3% was found to be

considerably faster in operation, mainly due to the time taken calcula-
ting sin and cos functions in the diffraction equations section of the
R formalism (there was also some saving of time in the displacement
field calculation). However, both these forms require a large number

of integration steps even in regions of crystal far from the loop. This
problem was overcome in the Bloch-wave program since the wave amplitudes,
unlike the beam amplitudes, do not vary in perfect crystal, and so very
large step lengths can be used far from the loop. Although the electron
diffraction part of the program is more complex, the time saved in
calculating ;% at fewer points in the integration outweighs this. This
advantage would presumably be even greater when calculating images of
defects with more complicated strain fields (e.g. loops in anisotropic
media). The majority of the images presented in this paper were com-
puted with this version of the program.

2.2 The Displacement Field of a Finite Circular Loop

The displacement field in an isotropic medium of a finite circular
edge loop (Burgers vector b normal to the loop plane) has been given by
Bullough and Newman (1960) and that of a shear loop (b in the loop plane)

by Ohr (1972). For a loop of mixed character these solutions may simply




be added in proportion to the edge and shear components of the desired ‘.
b. It is important to adopt a sign convention for b and the loop normal
n. The line direction of the dislocation loop is defined as positive |
in a right-handed screw sense with respect to n. Then b can be

assigned using the FS/RH convention. If this is done, |[b.n] >0 for a

loop with a vacancy edge component. The displacement field itself, and

the manner in which it was formulated for use in the image program is

given in the Appendix.

2.3 Loop Geometries

[t is expected that loops in bcc metals will nucleate on {110}
planes as faulted loops with b = % <110> and then shear to perfect
loops with b = % <111> or b = a<100> (Eyre and Bullough 1965); the
loop normals are either in the original <110> direction or some
direction intermediate between this and the Burgers vector b. The
experimentally useful diffracting vectors for obtaining dynamical images
from such loops are of the type <110>, <200> and <211> and these
reflections can be obtained at foil orientations close to z = [011] and
z= [001]. The simulated images from edge loops with such diffracting
vectors in an [011] foil have been reported in Parts I and II. In *-is
paper we present images for % <110>, % <111> and a <100> loops lying on
their possible {110} nucleation planes together with the perfect loops
rotated halfway and fully to their pure edge configurations imaged with
the same three diffracting vectors in a z = [D11] foil and with <110>
and <200> reflections in a z = [00T] foil. The procedure adopted to
identify these different loop geometries throughout the remainder of

this paper is as follows:-




(1) Edge %-<110> loops lying on their nucleation plane are
designated n,, b,.
(i) %-<111> or a<100> loops lying on their {110} nucleation
plane are designated nys 22
(ii1) These same perfect loops rotated halfway to a perfect edge
configuration are designated Nys 92.
(iv) These same perfect loops fully rotated to an edge configuration
are designated N3» 92.
Stereograms representing the two foil orientations together with
the operating reflections, g, and the possible lobp geometries
identified according to the above scheme are presented in figures la

and b. In the survey figures (2-7) only geometrically distinct

combinations of b,n and g are given; images corresponding to all other

combinations can be obtained by simple rotations and/or by mirror
reflections. With one exception, because of geometric equivalence, only
two of the possible nucleation planes are required, e.g. for loops
shearing to 92 =-% [?li] there are three possible nucleation planes,

n, = (110), (T07) or (017), but at z = [D1T] the first two are geo-
metrically equivalent. The one exception is the inclined b, = a[010]
loop in the z = Eﬂl] foil (see figure 1a) for which three of the {110}
nucleation planes are geometrically different. In this case only,
images are presented for all four possible nucleation planes (see
figures 5A and 5B). Some of the geometrically equivalent images are
included in figures (8-15) and the actual loop geometries presented in
the survey figures are denoted by circles in figures la and 1b.

2.4 Image Contrast Calculations

Bright and dark field intensities were obtained for both edge and

non-edge dislocation loops of radius r located at a distance d from the
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electron exit surface of a bcc crystal of thickness t., The contrast
parameters used in the present calculations are the same as those used
in previous work (Bullough, Maher and Perrin 1971, Part I) and are
given in Table 1. The extinction distances are the two-beam, 0%
values reported by Howie and Basinski (1968) for molybdenum and the
anomalous absorptiondistancesga were taken from the curve of two-beam,
300%K values published by Humphreys and Hirsch (1968) for atomic number
41. The mean absorption distance E; was taken equal to % 5]]0; this
assignment is not too critical since it only affects the scale of the
intensities.

Compared to the pure edge loops considered in Part I, it is
necessary to include many more combinations of b and n in order to
adequately represent the range of images to be expected from non-edge
loops. Moreover, in Part I, images were only presented for % <110> and
%-<1]]> loops at z = [011], whereas in this paper images are also
presented for edge and non-edge a <100> loops at z = [DO]] as well as
z = [011]. In order to restrict the number of images calculations

were carried out for only one set of parameters:- loop radius

r = 0.1 &110, crystal thickness t = 5.25 5110. loop position

d=0.15 5110 and Bragg deviation parameter wg = 0. Thus, all calcuja-
tions are for loops located at the centre of layer 1 (L]) in the layer
structure (Rahle 1967a). It was shown in Part I that loop location
within the layer structure, i.e. whether it is located within L], L2

or L3, foil thickness, loop size and small changes intng do not

fundamentally affect image symmetry for edge loops and we expect the

same generalisation to hold for non-edge loops.




3. Results
3.1 General description of the images

Dark field images from loops whose geometries are defined by the
encircled points on the stereograms in figures la and 1b are presented in
figures 2-7. The values of |g.b| for the loops considered in these
figures are listed for the two foil normals used in Table 2. The images
for pure edge loops are presented in the top and bottom rows of

Figures (2-7); the bottom row gives the images of a perfect loop

(b, = % <111> or a <100>) imaged at z = <011> or <001>, while the top
row shows the % <110> from which they may form. The approach gdopted in
Parts 1 and Il towards these images was to classify their two dimensional
image symmetry in terms of | g.b| and the angular relation between b and z;
in this way the images were classified into four basic types and these
are summarized in Table 3. Examples of image types 2, 3 and 4 for an
%[Tﬂ] edge Yoop at z = [011] and an a[D10] loop at z = [DO1] are
represented by the images vii in figures 2 and 6 respectively, while
type 1 images are seen in the images (i) in figure 3. The present
resuits have confirmed that the images from a <100> edge loops at z =
[bOEI. not considered in Parts I and II, can also be classified into the
four basic types. The images presented in the middle two rows (images
(141), (v), (iv) and (vi)) in figures 2-7 show the extent to which the
four types of images from edge loop are modified on going to non-edge
loops. In the remainder of this section we highlight the main features
of these modifications and in order to do this it is convenient to break
down the many combinations of loop geometries and foil plane normals
into 5 basic groups as follows:-
(I) b and n normal to 2z edge and non-edge loops
(11) 90° - 3 (by 2) or § (n, 2) > 0° non-edge loops only

i.e. b or n inclined to the image plane.
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(I11) 90° »[3 (b, 2) and § (n,2)] > 0° edge and non-edge loops.
i.e. b and n inclined to the image plane.
(IV) b or n parallel to z . non-edge loops only

(V) b and n parallel to z edge loops only -

Case (I) b and n normal to z t
The present results have confirmed that all edge loops (perfect and

faulted satisfying this condition exhibit types 2, 3 or 4 images (see
images listed in Table 4a). Rotation of n out of the b-z plane while s
retaining n normal to z modifies all three image types. The most

significant modification is to the type 2 'butterfly' image (see the

images identified under g.b = 0 in Table 4b). It can be seen that the

‘butterfly' symmetry is severely distorted, with one pair of the white E
and black lobes being enhanced at the expense of the other giving the
image an appearance more like a skewed type 3 B-W image. Examples of
edge loop 'butterly' images and non-edge loop distorted ‘butterfly'
images can be compared in figure 2(a) vii and iii and figure 6(a) vii & iv.

With regard to 0 <|g.b|€ 1 images, going to non-edge configura-
tions results in a skewing of the B-W lobes and some modification in
their interface, but there is no basic change in the type 3 symmetry
of the image (see images listed in Tables 4a and b). Of particular
interest are the images from non-edge loops for which g.n = 0 (see
figure 2(c)iii and figure 6(b)iv); they are both severely skewed and
there is some distortion of the black and white lobes. These types of
images are discussed in more detail in section 3.3.

The basic form of the [g.b|> 1 image is not changed significantly
on going from edge to non-edge loop geometries (see images listed in

Tables 4a and b). The interface structure characteristic of a type 4

image is retained but there is some skewing of the B-W lobes towards n.




case (11) 90° > (¥(b.z) or ¥ (n,z)] >0° i.e. b or n inclined to the

image plane
A1l loops satisfying thié condition are non-edge and the figures

showing the simulated images from such loops are listed in Table 5.

y—

Considering first g.b = 0 images, if n is rotated out of the image

e

plane with respect to b but remains in the b-z plane, or b is rotated

out of the image plane with respect to n but remains in the n-z plane,

- -
i s . Gl it 8 e

then the type 2 'butterfly' image symmetry is retained (see figures
5A(c)iii, 6(a)iii and v. In all other cases where n or b is rotated out
of the image plane and out of the b-z or n-z plane a distorted type 2
'butterfly' image is obtained. As in case (I) distortion of non-edge

g.b = 0 images is a consequence of an enhancement of the intensity of

I L TR

g g

one pair of black-white lobes at the expense of the second pair (see

figures 2(a)iv and vi, 4(b)iii, v, iv and vi). It should be noted that
the enhancement effect appears to be greater for b = a <100> n= <110>,
where § (n,b) = 45°, so that the '‘butterfly' symmetry is almost
completely lost and the images appear more like type 3 (see figures
4(b)iii and iv).

With regard to the images corresponding to 0 < |g.b[€1 and |g.b|> 1
the conirast from non-edge loops is basically the same as that predicted
for edge loops, apart from some skewing of the image along n if it is

rotated out of the b-z plane (see images listed in Table 5). There should

be no difficulty in the identification of such images as types 3 or 4.
case (11 90° > £ },z) and (n,2)]>0% .e. b and n inclined to the image

plane
In this category both b and f are rotated out of the image plane and

edge and non-edge loop geometries are possible. The list of figures show-
ing images from such loops are given in Tables 6a and b and it can be

seen that a comparatively large number of combinations must be considered.
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Considering first the contrast corresponding to g.b = 0, all of the
edge loops satisfy the conditions specified in Part I for obtaining type 1
contrast and the present results confirm that this contrast is obtained for
%s‘llO) loops at z = [001] as well as for % <110>» %<Hl> and a<100>
loops at 2 = [01¥]. The images from non-edge loops also exhibit type 1

contrast provided ¥ (b,2) and (ﬂﬁi) < 45°, However, significant devia-

tion from this contrast is observed when § (n,z) > 45°. For example in ;
figure SA(c)v when n lies in the b-z plane and ¥ (n,2) = 67.5%, a ‘butterfly" £
image is obtained. In the case where n is rotated out of the (b-z) plane ;

and 9 (n,2) = 60° or 52° distorted images with enhanced black and white

lobes and an L shaped interface are obtained (see figures 5B(c)iii, iv, v
and vi). The possible confusion of such images with modified type 3 images
corresponding to 0 <|g,gl2 1 is discussed in section 3.3.

The present results also confirm that all of the edge loops for which
0 <|g,gj% 1 is satisfied exhibit type 3 contrast (see the figures listed in
Table 6a). Particular attention is drawn to the edge %<110> loops at z =
[00T] imaged with g = <110> so that |g.b|= 4 (see figures 6(b)i and (c)i
and 7(b)i and ii and (c)i and ii). As in the case of similar images from
% <110> Toops at z = [DIT| the images are truncated and the B-W interface
shows even more severe cusping, e.g. compare figures 2(b)ii and 7(b)i.
This again reflects the angle n and b make with respect to z, being 60° in
the former case and 45° in the latter. An important feature of such images
is that the sense of cusping reverses on reversing the sign of g.b (compare
figures 7(b)i and ii) and provided + g pairs of images are obtained there
should be no difficulty in identifying them as type 3. On going to non-edge
loop geometries (see Table 6b for list of figures) type 3 contrast is

obtained provided g lies along or gp. Of particular importance are the

U

images obtained when gp. n_and g are all rotated with respect to each other.

-
Consider first the case when g and h,, are rotated in the opposite sense with

- 10-
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re b_.
spect to b,

either side of gp and § (n,b) = 35° basically type 3 contrast is obtained

The present results show that if n and g are rotated 35°

(figure 3(d)iv). However, on increasing the angle so that § (ﬂp,Ep) = 559,
3 (g,gp) = 55° and ¥(n,b) = 45°, the B-W contrast deviates quite
significantly from that corresponding to type 3 contrast. The B-W inter-
face takes a zig-zag fora and the black and white lobes split into two
either side of the interface (figures 5B(a)iii and (d) iv). We shall
return to consider the possible confusion between such images and
distorted butterfly images corresponding to g.b = 0 in a later section.
It is interesting to note that as the loops rotate tbwards the edge
configuration so that § (gp'gp) and § (n,b) are reduced to ~ 27§° and
22§° respectively the zig-zag interface and split lobe are virtually lost
and the image reverts to type 3 contrast (figures 5B(a)v and (d)vi).

The second case to consider is when g and n, are rotated in the same
sense with respect to gp. The B-W interface then takes a wavy form but
the black and white lobes are not split and the image retains basically
type 3 contrast (figures 5B(a)iv and (d)iii).

With regard to images corresponding to |g.b|> 1 only edge loops
satisfy the conditions specified for case(III). Figures showing images
from such loops are listed in Table 6a and as expected, they all exhibit
type 4 contrast.

Case(IV): b or p parallel to z:

A11 loops satisfying this condition are non-edge and the figures show-

ing the corresponding simulated images are listed in Table 7. It should

be noted that for b parallel to z, g.b = 0 for all diffracting vectors,

]

while if n is parallel to z, then |g.b] =1 for the diffraction vectors
considered.
Considering first the g.b = 0 images, as expected they all exhibit

type 1 contrast and will probably not be visible experimentally. The
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images from loops satisfying lg,gj = 1 exhibit type 3 contrast, but the
B-W interface rotates so that it is always perpendicular to g and some
care may be needed in distingdishing such images from g.b = 0 type 1
images discussed above, particularly when higher order reflections are
used, e.g. <211> (see figures 3(c)iii and (d)iii). We consider this
aspect further in section 3.2.

Case(V):b and n parallel to z

A11 loops satisfying this condition are edge-loops and g.b = 0 for all
reflections. The figures showing simulated images from such loops
are listed in Table 8, and as reported in Part I they-all exhibit type 1
contrast. As mentioned in the preceding paragraph, the level of contrast
obtained increases as the order of reflection increases so that the images
for g = <211> exhibit clear black-white lobes and they may be mistaken
for type 3 images.
£ Analysis

Before concluding the discussion of image classification mention
should be made of the traditional % analysis method for determining b, where
2 is a vector joining the centres of black and white lobes of images
corresponding to [g.b| > 0 (Rhle et al 1965, RUhle 1967a,b, McIntyre
1967). Earlier studies (Wilkens & Rihle 1972, Haussermann et al 1972,
Eyre 1972, Eyre et al 1974, Eyre et al 1977a (part I)) have predicted that
the simple 2 analysis breaks down for edge loops and loops having an
appreciable non-edge component in elastically isotropic materials.
Simulated B-W images from edge and non-edge loops showing the position of
2 for various combinations of g, b and n are presented in figure 8. These
results demonstrate that the conditions for % to be parallel to b or gp
are even more restrictive for non-edge loops than for edge loops and also
that 2 is not uniquely related to n. The results also agree with the

more detailed analysis by Ohr (1976) predicting the angular relationships
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between g, b (or gp) » N (or gp) and % for non-edge loops.
3.2 Influence of ]jl_x |b| on Image Strength

There is a general tendency for image strength to increase as the
product of |g| and |b |increases. This is most noticeable for the
images obtained when g.b = 0 and an example is presented in figure9 which
shows a series of images exhibiting type 2 contrast from edge §<110>.
;«-m; and  a<100>loops imaged with <110<, <200> and <211> g's.
Further examples for g.b = 0 images exhibiting type 1 contrast and for
lg.b| = 1 images exhibiting type 3 contrast can be seen in figures

3(a)-(d) i and 5A(a)-(d) ii and iv. It is emphasised that [g.b| >]
images exhibiting type 4 contrast are only obtained for higher order
reflections, i.e. <200> and <211> and thus, there is not a noticeable
effect of |g| x |b| on image strength. The important practical
consequence of the |g| x |b| effect is the possible difficulty in
distinguishing between strong type 1 contrast and weak type 3 contrast
e.g. compare images i1 & iv in figures 5A(a) & (c). However, as already
emphasised in Parts. I and II it is essential to achieve a match between
theory and experiment for a number of g's and values of [g.b| before b
and n can be assigned unambiguously to a given loop. The general con-
clusion to be drawn is that the |g| x |b] effect on image strength should
not give rise to any practical difficulties in the analysis of loop
geometries.

3.3 Problems in Image Identification for Non-Edge Loops

It was pointed out in Section 3.1 that images corresponding to g.b
= 0and 0 <|g.b[%1 can be modified very considerably on going from edge
to non-edge loop geometries. It is important therefore to consider the
difficulties that may arise due to these modifications in distinguishing
between the different types of image. The possible confusion arising
between type 1 and type 3 images from loops with b or n parallel to z
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because of the dependence of image strength on |g| x |b| has already
been discussed in section 3.2.

There are three additional cases to consider. The first is a further
example related to the modification ¢f type 1 contrast corresponding to
g.b = 0 for inclined edge loops. An example of the change in contrast on
going to non-edge loop geometries is shown by the top row of images in
figure 10. As n rotates away from b and out of the b-z plane strong black
and white lobes develop with some splitting of the white Tobe so that the
B-W interface develops an L shape when ¥ (n,b) = 45° and § (gp,gp) = 55°,
The second set of images in the bottom row of figure 10 are for loops
having the same geometries but imaged with g = [2il_‘| so that |g.b| = 1. In
this case the B-W interface again becomes L shaped as n rotates away from

b and there is a close similarity between the form of the g.b = 0 and |g.b|

1 images when the loop lies on its {110} nucleation plane (compare the
images in column (c) of figure 10).

The second case to consider is the modification in type 2 contrast
corresponding to g.b = 0 for edge loops with b normal to z. An example is
shown by the top row of images in figure 11 which are for an %- Ijﬁi] loop.
As n is rotated away from b about z the intensity distribution in the three
pairs of black and white lobes is considerably modified so that the images
from the non-edge loops appear more like a distorted type 3 image. The
interface between the most prominent black and white lobes initially becomes
straight for § (n,b) = 17}0 (figure 11b) and then develops a zig-zag as n
rctates further to § (n,b) = 35° (figure 11c). The second set of images
in the bottom row of figure 11 is for three equivalent loop geometries but
imaged with g = 200 so that |g.b|= 1. The greatest similarity in this case
exists between the top image in column (b) with the bottom image in column
(c) which is a heavily skewed type 3 contrast corresponding to g.n = 0.

The third case to consider is the modification in type 3 contrast
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corresponding to |g.b| = 1 for edge loops. An example is shown by the top
row of images in figure 12 which is for an inclined b = a [D14] loop. As n
is rotated away from b and out of the b-z plane there is a splitting of
the black and white lobes and the B-W interface takes on a markedly zig-zag
form. The bottom row of images in figure 12 is the same as the top row of
figure 11 and there is clearly a close similarity between the two images

in column (c) in figure 12 corresponding to |g.§| = ] and 0 respectively

It is clear therefore that considerable care must be exercised in
distinguishing between images corresponding to g.b = 0 and to 0 <|g.b|< 1
from non-edge loops. However, three general points should be emphasised.

(a) The above three cases where confusion can arise are when g,gp
and gp are rotated with respect to each other by comparatively large angles.
The present work has shown that in all other cases considered there is little
difficulty in distinguishing between distorted type 2 and type 3 images
corresponding to g.b. = 0 and |g.b| = } or 1 for non-edge loops.

(b) No examples were found of images exhibiting type 4 contrast from
loops within the layer structure being sufficiently modified so that they
could be confused with images corresponding to |g.b| <1. In all cases the
characteristic B-W interface structure is retained and, as will be shown in
Part IV, this should always provide a firm basis for their positive
identification.

(c) The results presented in this section together with comment (b)
serve to emphasise the necessity of obtaining images in several reflections
from a given loop to arrive at an unambiguous assignment of b and n.

3.4 Determination of loop Normal.

As well as determining b it is clearly important to evaluate n in
order to define the geometry of non-edge loops. The images presented in
figure 8 have already shown that the ¢ vector is not uniquely related to n.

In exploring alternative approaches to estimating n we have examined two
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features related to the change in image symmetry on going to non-edge loop
geometries. First is the distortion of the type 2 “butterfly" images,
giving them a strongly skewed appearance, when n is rotated out of the b-z
plane. This distortion occurs irrespective of whether or not n lies in the
image plane (figures 2(a) iii - vi, 4(b) iii - vi, 6(a) iv and vi). A
striking feature of all these images is that the direction of skewing tends

to lie along n (or its projection in the image plane, n_ ). It is clear

LS
that on rotating n from one side of b to the other the strong black and
white lobes switch sides with respect.to the line of symmetry along g e.g.

see images iii and iv in figures 2(a) and 4(b). Thus, if sets of possible

n's for non-edge loops are rotated out of the b-z plane and the gp's are
rotated with respect to each other they may be reliably distinguished from
the direction of skewing of the distorted type 2 images. However, when gp
is parallel to b the type 2 image undergoes minimal change in symmetry
making it virtually impossible to even distinguish between edge and non-
edge loops (figures 6(a) iii, v, and vii),

The second feature we have investigated is the angular relationship

between m and n (or gp), where m defines the normal to the B-W interface in

type 3 and type 4 images. In the case of type 4 images m is drawn normal

to the axis of theellipse delineating the interface structure. The results
for loops having b =% <111> and a <100> at z = [017] and b = a <100> at
z = [DOT] are shownin figures 13, 14 and 15 respectively.

Considering first figure 13, the set of images included in (a) are

for loops having b = % Dﬁ] normal to z. The top row of images are for
edge loops, the middle row for non-edge loops with n remaining normal to
2z, but rotated out of the b-z plane by -35%, i.e. n = [017] and the bottom
row are for a second non-edge loop geometry with n inclined to z by 60° and

rotated out of the b-z plane by ~20° i.e. n = [114] The striking feature
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of these results is that m is independent of g and always coincides with n.

when both b and n lie in the image plane. Even when n is inclined to the

image plane m 1is influenced slightly by g but always lies close to ﬂp

However, a rather different picture emerges from the set of images in
figure 13(b) which are from loops having b =% (11 inclined by 35° to z.
Again, the top row of images correspond to the loop in its edge configura-

tion and m is only parallel to when g, Pp and gp are all coincident, but

%
for the two <211> g's, rotated out of the b-z plane, m is rotated

towards g. The second row of images correspond to non-edge loops with

O

n = [011) parallel to z and in this case m is always parallel to g. The
third row of images correspond to the loop in a second non-edge configura-

tion with n = [11G)inclined to z by 60° and rotated out of the b-z plane

f' by 35°. Again m is influenced by g although for g = [200] and [217] m lies
’ close to ﬂp

Going on to the second example illustrated in figure 14 the images are
from both inclined and edge-on (with respect to the image plane) a<100>
loops and a similar picture emerges as in the preceding example. The set
of images included in figure 14(a) are for laops having b = a[010] inclined
by 45° to Z in an edge configuration (first column) and lying on one of the
possible {110} nucleation planes (second, third and fourth columns).

Considering first the images from the edge loops (first column), m lies

along LU for g = 011 when 9> N, and gp are coincident and is rotated to-

wards g for the two <211> g's, The images from the loop in a non-edge
configuration with n = [bﬁ] (second column in figure 14(a)) is aninteresting i
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